Final Review

Shaoyun Yi

MATH 242

University of South Carolina

Apr 23, 2020

Definitions in ODE

- I. Order of an ODE
- II. Checking Solutions of ODE's
- III. General Solutions vs. Particular Solutions (I.V.P.)

IV. ODE's of the form
$$\frac{dy}{dx} = f(x)$$

- (i) This is the first ("simplest") type of ODE
- (ii) Application: Free-fall problems; acceleration/velocity/position

V. Slope Fields and Solution Curves: Geometric way to describe the (approximate) solution

- VI. Theorem for Existence and Uniqueness of Solutions (for I.V.P.)
 - (i) f(x, y) is continuous near $(a, b) \Rightarrow$ Existence on some open interval I
 - (ii) Moreover, if in addition $\partial f / \partial y$ is continuous near $(a, b) \Rightarrow$ Uniqueness on some (perhaps smaller) interval J

Separable and Linear first-order ODE

I. Separable ODE's of the form $\frac{dy}{dx} = g(x)k(y)$

(i) Implicit, General/Particular and Singular Solutions(ii) Application: Exponential Growth and Decay

- II. First-Order Linear ODE's of the form $\frac{dy}{dx} + P(x)y = Q(x)$
 - (i) Finding a Multiplier (Integrating factor)

$$\rho(x) = \exp(\int P(x) \, dx)$$

(ii) Solving the ODE

- **1** Multiply both sides of the equation by $\rho(x)$.
- **2** Recognize that the LHS of the Eq. is the derivative $D_x[\rho(x)y(x)]$.
- Integrate both sides of the equation.

More types of first-order ODE and Methods

- I. Substitution Methods for Solving ODE's
 - (i) The first-order ODE of the form

$$\frac{dy}{dx} = F(ax+by+c) \qquad \dashrightarrow v = ax + by + c \quad \dashrightarrow \text{ Separable ODE}$$

(ii) The $homogeneous^1$ first-order ODE of the form

$$\frac{dy}{dx} = F\left(\frac{y}{x}\right) \qquad \dashrightarrow \quad \mathbf{v} = \frac{y}{x} \qquad \dashrightarrow \quad \text{Separable ODE}$$

(iii) Bernouli Equations of the form

 $\frac{dy}{dx} + P(x)y = Q(x)y^n \quad \dashrightarrow \quad y = y^{1-n} \quad \dashrightarrow \quad \text{First-order Linear ODE}$

(iv) Application: Flight Trajectories

II. Exact Equations of the form

$$F_x dx + F_y dy = 0$$
 or $M dx + N dy = 0$

(i) **Theorem** of Criterion for Exactness: $\frac{\partial M}{\partial x} = \frac{\partial N}{\partial x}$

(ii) Solve the ODE

¹This is different from the homogeneous equation in Chapter 3.

Yi

Some Applications: Mathematical models and numerical methods

I. Population Models: General Equation:

$$\frac{dP}{dt} = (\beta - \alpha)P$$

- β : birth rate; α : death rate
- Logistics Equation:

 $\frac{dP}{dt} = kP(M - P), M \text{ is the carrying capacity}$

- II. Equilibrium Solutions and Stability:
 - Phase Diagrams
 - Bifurcation Points
- III. Acceleration-Velocity Models:

$$F = ma = mx''$$

IV. Numerical Approximation²: (Improved) Euler's Method

²Won't show up in the test

Yi

Linear equations of higher order: Definitions

- I. Principle of Superposition (for linear Homogeneous equations)
- II. Homogeneous vs. Non-homogeneous (*n*th-order linear equations)
- III. Complimentary solution y_c . vs. Particular solution y_p

Any solution of Non-homogeneous equation: $y = y_c + y_p$

- IV. Linearly Independent vs. Linearly Dependent (Wronskians)
- V. Wronskians (for any *n* functions, $n \ge 2$):
 - Definition
 - Calculations

Homogeneous linear ODE's with Constant Coefficients

- I. Characteristic equation
- II. Distinct Real Roots:

$$y_c(x) = c_1 e^{r_1 x} + c_2 e^{r_2 x} + \dots + c_n e^{r_n x}$$

III. Repeated Real Roots r with Multiplicity $k \ge 2$:

$$(c_1+c_2x+\cdots+c_kx^{k-1})e^{rx}$$

IV. Unrepeated Pair of Complex Roots $a \pm bi$:

 $e^{ax}(c_1\cos bx+c_2\sin bx)$

V. Repeated Pair of Complex Roots $a \pm bi$ with Multiplicity $k \ge 2$:

$$e^{ax} \cdot \left(\sum_{p=0}^{k-1} x^p (c_p \cos bx + d_p \sin bx)\right)$$

VI. General Solutions & Solutions to I.V.P.'s

Recall that

Any solution of Non-homogeneous equation: $y = y_c + y_p$

Note that y_c can be solved by the methods in previous slide. To find y_p :

- I. Method of Undetermined Coefficients
 - (i) Rule 1:
 - Without difficulty (i.e. Linearly Independent already)
 - (ii) Rule 2:
 - With difficulty (i.e. multiply by x^s to obtain Linearly Independent)
- II. Method of Variation of Parameters

Applications of second-order linear equation

Springs and Damping

$$mx'' + cx' + kx = F(t)$$

I. §3.4: Free---> ($F_E = F(t) = 0 \leftrightarrow$ Homogeneous equation)

- Undamped (c = 0): Simple harmonic motion
- Damped ($c \neq 0$):
 - Underdamped,
 - Critically Damped,
 - Overdamped.

II. §**3.6:** Forced---> ($F_E = F(t) \neq 0 \leftrightarrow$ Non-Homogeneous equation)

• Undamped (c = 0)

Laplace Transforms and Inverse Transforms

I. Definition of the Laplace Transform:

$$F(s) = \mathcal{L}{f(t)} = \int_0^\infty e^{-st} f(t) dt$$

- II. The Inverse Transform: $f(t) = \mathcal{L}^{-1}{F(s)}$
- III. Some General Properties of the Laplace Transforms
 - (i) Linearity
 - (ii) Existence (Functions of Exponential Order)
 - (iii) Uniqueness
- IV. Laplace Transforms of Some Elementary Functions
 - (i) Constant functions
 - (ii) Power functions (Need Gamma function $\Gamma(x)$)
 - (iii) Exponential functions
 - (iv) Trigonometric functions $(\sin t, \cos t \& \sinh t, \cosh t)$
 - (v) Piecewise Continuous Functions (unit step functions)

Summary: A short table of Laplace transforms

f(t)	F(s)	
1	$\frac{1}{s}$	(s > 0)
$t^n \ (n \ge 0)$	$\frac{n!}{s^{n+1}}$	(<i>s</i> > 0)
t^{a} (a > -1)	$\frac{\Gamma(a+1)}{s^{a+1}}$	(<i>s</i> > 0)
e ^{at}	$\frac{1}{s-a}$	(s > a)
cos kt	$\frac{s}{s^2+k^2}$	(s > 0)
sin <i>kt</i>	$\frac{k}{s^2 + k^2}$	(<i>s</i> > 0)
cosh <i>kt</i>	$\frac{s}{s^2-k^2}$	(s > k)
sinh <i>kt</i>	$\frac{k}{s^2 - k^2}$	(s > k)
u(t-a)	$\frac{e^{-as}}{s}$	(<i>s</i> > 0)

Transforms of Derivatives vs. Differentiation of Transforms

$$\mathcal{L}{f'(t)} = s F(s) - f(0)$$

= s F(s) (if f(0) = 0)
$$\mathcal{L}{f^{(n)}(t)} = s^{n}F(s) - s^{n-1}f(0) - \dots - sf^{(n-2)}(0) - f^{(n-1)}(0)$$

= s^{n}F(s) (if f(0) = \dots = f^{(n-2)}(0) = f^{(n-1)}(0) = 0)

- Application: (i) Linear system; (ii) Additional transform techniques:
 eg. L{te^{at}}, L{t sin kt} → Much easier by using below!!
- II. Differentiation of Transforms

$$F'(s) = \mathcal{L}\{-tf(t)\} \iff f(t) = \mathcal{L}^{-1}\{F(s)\} = -\frac{1}{t}\mathcal{L}^{-1}\{F'(s)\}$$
$$F^{(n)}(s) = \mathcal{L}\{(-t)^n f(t)\} \iff (-1)^n F^{(n)}(s) = \mathcal{L}\{t^n f(t)\}$$

Transforms of Integrals vs. Integration of Transforms

I. Transforms of Integrals

$$\mathcal{L}\left\{\int_0^t f(\tau) \, d\tau\right\} = \frac{\mathcal{L}\{f(t)\}}{s} = \frac{F(s)}{s}, \quad \text{for } s > c.$$

Equivalently, then

$$\mathcal{L}^{-1}\left\{\frac{F(s)}{s}\right\} = \int_0^t f(\tau) \, d\tau = \int_0^t \mathcal{L}^{-1}\left\{F(s)\right\} \, d\tau.$$

II. Integration of Transforms

$$\int_{s}^{\infty} F(\sigma) \, d\sigma = \mathcal{L}\left\{\frac{f(t)}{t}\right\}, \qquad \text{for } s > c.$$

Equivalently, then

$$f(t) = \mathcal{L}^{-1}\{F(s)\} = t \, \mathcal{L}^{-1}\left\{\int_{s}^{\infty} F(\sigma) \, d\sigma\right\}.$$

Partial Fraction Decomposition, Translation and Convolution

I. Partial Fraction Decomposition: Rule 1 and Rule 2

$$\mathcal{L}^{-1}\left\{\frac{s}{(s^2+k^2)^2}\right\} = \frac{1}{2k}t\sin kt.$$
$$\mathcal{L}^{-1}\left\{\frac{1}{(s^2+k^2)^2}\right\} = \frac{1}{2k^3}(\sin kt - kt\cos kt).$$

II. Translation

(i) Translation of the *s*-Axis

$$\mathcal{L}\{e^{at}f(t)\}=F(s-a) \Leftrightarrow \mathcal{L}^{-1}\{F(s-a)\}=e^{at}f(t).$$

(ii) Translation of the *t*-Axis

 $e^{-as}F(s) = \mathcal{L}\{u(t-a)f(t-a)\} \Leftrightarrow \mathcal{L}^{-1}\{e^{-as}F(s)\} = u(t-a)f(t-a)$

III. Convolution

(i) Definition:
$$(f * g)(t) = \int_0^t f(\tau)g(t - \tau) d\tau = (g * f)(t)$$

(ii) The Convolution Property Theorem
 $\mathcal{L}{f(t) * g(t)} = \mathcal{L}{f(t)} \cdot \mathcal{L}{g(t)} \Leftrightarrow \mathcal{L}^{-1}{F(s) \cdot G(s)} = f(t) * g(t).$

- +

Stay safe!

Good Luck for all Finals!!